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The study based on multivariate statistical approach revealed new information about source of elements during the 
combustion of pitcoal/biomass(sawdust) briquettes. The Principal Components Analysis showed that the pattern of total 
element contents was defined by four latent factors explaining more than 92 % of the total variance of the system. 
According to their source these factors were associated to species coming from: sedimentary minerals from pitcoal (33.9%); 
biomass (37.8%); silicates from pitcoal (11.5%); reducible species from pitcoal (9.2 %). Four latent factors with variance 
over 85 % explained the sources of water available species: free metal ions (32.5 %); adsorbed on secondary Al minerals 
(24.4 %); reducible species retained on oxides (14.5%); biomass (14.2 %). The contribution of variance to element pattern 
was higher from pitcoal than biomass, since the latent factors attributed to pitcoal explained 54.6% of the variance for the 
total and 71.4% for the water leachable content, respectively. Results were confirmed by the cluster analysis that 
highlighted three groups of elements according to their affinities as well as samples clustering according to their nature. The 
Pearson’s positive correlations among Fe and Al and most of trace elements attested their natural origin in both pitcoal and 
biomass, free from anthropogenic input.      
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1. Introduction 
 
The final goal of a chemical analysis is the 

interpretation of experimental data resulted from 
laboratory measurements, which requests statistical 
processing. This stage is often difficult to achieve, 
especially in the case of complex systems, where several 
variables are measured for each specimen and a large 
volume of experimental data are collected. 

When two or three variables are used to describe a 
system, the interpretation can be readily carried out using 
linear regression in order to identify possible correlations 
between variables [1-7]. A statistical non-complicated 
approach to assess agreement between two variables is the 
Bland and Altman test, which has the advantage to be 
applicable to variables of both normal and non-normal 
distribution. The method is also suitable for statistical 
analysis of variables unevenly spread over the 
concentration range under study and grouped at the 
extremes [6-10]. 

When more than four variables are measured for each 
sample, a valid interpretation asks for a multivariate 
analysis of data in finding patterns and relationship. Such 

approach is the Principal Component Analysis (PCA), 
which allows, among others, to identify the source of 
elements or chemical species as variables in the 
characterization of a system [1, 10]. Another approach of 
the multivariate analysis is the Cluster Analysis (CA), 
which divides a group of objects (elements, species, 
analytical parameters) into classes so that similar objects 
are in the same class [1]. 

PCA and CA have been widely used in environmental 
studies to identify pollution sources or find the natural or 
anthropogenic origin of various species [10-18]. These 
statistical approaches are also suitable for data analysis in 
chemical speciation of elements, in which, for the same 
element several species are determined [18-20]. PCA was 
used for detecting abnormal events and diagnosis of 
municipal solid waste incinerators in order to improve the 
safety and continuity of production [21]. PCA revealed 
that biomass burning is major pollutant source with metals 
coming from both domestic and industrial activities in 
Bangkok [5]. The Principal Components 
Analysis/Absolute Principal Components Scores 
(PCA/APCS) approach showed that the combustion 
sources (natural gas, wood, coal/coke, biomass) 
contributed 19-97% of various carcinogenic polycyclic 
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aromatic hydrocarbons (PAHs) in India [22]. The same 
technique showed that the primary pollution sources in 
Central Taiwan include vehicle exhaust, coal/wood 
combustion, incense burning and incineration emissions. 
Open burnings of rice straw was estimated to contribute 
with 5.0-33.5% to atmospheric PAHs [23]. 

It is the aim of this paper to apply PCA and CA 
receptor modeling in order to obtain a pattern of heavy 
metals potential sources from pitcoal/biomass blend 
briquettes combustion. These approaches provide more 
reliable information and a better understanding of the role 
of blend parent materials during combustion in respect 
with total and water-leachable heavy metal concentrations. 
Additionally, the Pearson’s correlation analysis was used 
to predict the natural or anthropogenic origin of heavy 
metals. In the statistical treatment of our data we used 
XLStat as a Microsoft Excel plug-in (Addinsoft). 

 
 
2. Experimental 
 
2.1 Sample analysis 
 
Multivariate statistical analysis was applied on an 

input matrix of 19 samples x 20 variables. The analyzed 
samples were parent materials used in briquettes 
manufacturing (pitcoal and sawdust), briquettes containing 
10-75% sawdust and the resulted bottom ashes. The 
variables were total element contents (As, Al, Ba, Cd, Cr, 
Co, Cu, Fe, Ga, K, Mn, Mo, Ni, P, Pb, Si, V, W, Zn, Zr) 
extracted in HNO3-HF mixture by microwave digestion 
and water available species of elements at a solid/liquid 
ratio 1:2 (SR EN 12457/1:2003). Elements were 
determined in solutions by inductively coupled plasma 
optical emission spectrometry (ICP-OES) using the 
multichannel spectrometer Spectro CirosCCD (Spectro 
Analytical Instruments, Kleve, Germany). Details about 
instrumentation, analytical sample preparation and 
characterization of raw materials and bottom ashes are 
found in reference [24]. 

 
 
3. Theoretical 
 
3.1. Principal Component Analysis [1,11] 
 
PCA is a statistical technique, which can be applied to 

a large set of variables in order to reduce dimensionality. 
Therefore, the great number of intercorrelated variables is 
replaced with a smaller number of independent variables 
(i.e. five or six) called principal components (PCs) or 
latent factors. This substitution provides a new perspective 
in data structuring and interpretation. The selected PCs are 
not known and cannot be determined directly but they 
enclose the factor loadings obtained from the multiple 
regression for each studied component. Factor loadings are 
a quantitative expression of their role in a certain latent 
factor.  In order to explain the variability of the system 
only the PCs with eigenvalues higher than 1 are taken into 
account. Eigenvalue gives the amount of variance in the 
data set, which is explained by PCA. Moreover, the 
percentage of the cumulative variance of the selected PCs 

should be above 70 % of the total variance. In the Varimax 
rotation mode the selected PCs are rotated in order to 
maximize the explained variance and increase the weight 
of the higher factor loadings, while reducing those of 
lower values. An examination of the rotated component 
loadings on the original elements allowed the 
identification of the PCs as sources affecting the data. 
Before carrying out the PCA raw data need to be 
transformed into a dimensionless standardized form by 
normalization with the standard deviation of each variable. 
This is essential for input matrix in which variables have 
different measurement units, different orders of magnitude 
and high differences among variables and large variances. 
The Varimax rotation approach on standardized data was 
used in this study in order to identify the sources of 
elements in the process of the pitcoal-biomass briquettes 
combustion. 

 
3.2 Cluster Analysis [1] 
 
The aim of the CA is to identify the similarities or 

dissimilarities within a large group of objects 
characterized by a certain number of variables. The 
homogenous objects are grouped on the basis of calculated 
distances between all objects. The similarity between 
objects results from the Euclidian distance or squared 
Euclidian distance. An appropriate linkage algorithm 
(single, average, centric linkage, Ward’s method) is 
applied to link a cluster of objects with close distance and 
to separate those located at larger distances. The 
hierarchical dendrogram (Euclidian distance and Ward’s 
method) was applied in this study in order to identify the 
similarities between elements using the total and water 
available content of elements. The same algorithm was 
used in the cluster analysis of the samples. Ward’s method 
yields clearly structured and relatively stable cluster over a 
wide range of similarities. 

   
4. Results and discussions 
 
4.1. Pearson’s correlation matrix  
 
Correlation and regression analysis are mostly used to 

estimate natural and anthropogenic contribution of 
elements in sediments. Major constituents of sediments 
such as iron, aluminium and total organic carbon (TOC) 
are used as tracers in such studies. The reason to select Fe 
and Al tracer elements is that they have high and constant 
concentrations free of anthropogenic influences and retain 
heavy metals by adsorption and coprecipitation [4, 19, 25, 
26]. A positive significant correlation between tracers and 
heavy metals suggests the natural origin of elements. In 
order to estimate the origin of heavy metals following 
combustion of pitcoal-sawdust briquettes, the correlation 
coefficients between Al and Fe content and heavy metals 
as possible pollutants were calculated (Table 1). The 
positive correlation among Al, Fe and As, Cd, Co, Cr, Cu, 
Ni, V, Mo, W proves their natural origin in parent 
materials. The inconsistent correlation coefficient for Pb 
suggests an anthropogenic origin.   

The bold face intercorrelation coefficients stand for a 
common source of elements but this is difficult to identify.



 
 
 

Variables Al K Cr Mn Fe Co Ni Cu Zn Ga Cd Ba Pb Si P V As Zr Mo W 
Al 1 0.177 0.516 0.202 0.925 0.900 0.744 0.378 0.181 0.182 0.406 0.336 0.116 0.469 0.219 0.926 0.673 0.339 0.635 0.844
K  1 0.711 0.069 0.181 0.239 -0.129 -0.142 -0.032 0.035 0.195 0.490 0.561 -0.071 0.307 0.214 -0.245 0.020 0.258 0.029
Cr   1 0.279 0.594 0.692 0.397 0.411 0.144 0.246 0.601 0.629 0.768 0.033 0.520 0.598 0.149 0.196 0.674 0.505
Mn    1 0.116 0.216 0.022 0.127 0.377 0.997 0.404 0.261 0.360 0.189 0.927 -0.005 -0.105 -0.071 0.340 0.427
Fe     1 0.984 0.788 0.569 0.140 0.098 0.529 0.418 0.332 0.417 0.217 0.964 0.667 0.389 0.713 0.899
Co      1 0.803 0.609 0.184 0.195 0.599 0.455 0.436 0.396 0.336 0.941 0.640 0.387 0.788 0.920
Ni       1 0.638 0.212 0.005 0.304 0.009 0.035 0.267 0.048 0.813 0.719 0.322 0.653 0.762
Cu        1 -0.011 0.131 0.604 0.072 0.397 0.030 0.205 0.506 0.418 0.254 0.541 0.587
Zn         1 0.379 0.103 0.203 0.088 0.258 0.384 0.162 -0.014 0.068 0.155 0.340
Ga          1 0.413 0.262 0.350 0.182 0.913 -0.030 -0.121 -0.080 0.310 0.414
Cd           1 0.583 0.695 0.221 0.516 0.428 0.260 0.286 0.585 0.604
Ba            1 0.643 0.208 0.381 0.358 -0.087 0.252 0.199 0.369
Pb             1 0.005 0.630 0.211 -0.112 0.164 0.564 0.347
Si              1 0.179 0.354 0.616 0.840 0.429 0.608
P               1 0.103 -0.115 0.026 0.519 0.478
V                1 0.662 0.367 0.649 0.820
As                 1 0.555 0.624 0.667
Zr                  1 0.442 0.493
Mo                   1 0.782
W                    1 
Values in bold are significantly different from 0 with a 
significance level alpha=0.05 

             

Table 1. Pearson’s C
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4.2. Principal component analysis     
 
The varimax rotated factor loading of four principal 

components of the total metals content in bottom ash, 
sawdust and pitcoal are presented in Table 2. The loadings 
in bold face correspond to elements with dominant 
influence on the selected latent factor. 
 

Table 2. Varimax rotated factor loadings of the total metal 
concentrations in bottom ash, sawdust and pitcoal. 

 
Variable  PC1 PC2 PC3 PC4 

Al 0.951 0.238 0.178 -0.044 

K 0.129 0.901 0.065 -0.381 

Cr 0.404 0.891 -0.104 0.093 

Mn 0.088 0.953 0.020 0.072 

Fe 0.973 0.182 0.101 0.081 

Co 0.934 0.309 0.096 0.140 

Ni 0.824 -0.024 0.075 0.481 

Cu 0.479 0.099 -0.059 0.839 

Zn 0.254 0.808 -0.179 0.444 

Ga 0.069 0.966 -0.003 0.100 

Cd 0.424 0.481 -0.002 0.357 

Ba 0.221 0.873 -0.023 -0.271 

Pb 0.116 0.948 -0.137 0.195 

Si 0.304 -0.106 0.923 -0.191 

P 0.077 0.953 0.029 0.099 

V 0.970 0.175 0.070 0.067 

As 0.680 -0.299 0.527 0.201 

Zr 0.185 -0.007 0.905 0.101 

Mo 0.547 0.548 0.344 0.350 

W 0.902 0.198 0.320 0.199 

Variability / % 33.9 37.8 11.5 9.2 

 
 Four latent factors explain more then 92 % of the 

total variance of metal sources. The first latent factor 
responsible for 33.9 % of the total variance could be 
labeled as sedimentary minerals from pitcoal as it includes 
the metals found in high concentrations in pitcoal (Al, As, 
Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, V and W) [24]. This 
source corresponds to species bound on secondary Al and 
Fe minerals, which are dominant in pitcoal and are likely 
to retain element compounds by adsorption and 
coprecipitation. The existence of As in this factor is in 
agreement with its high concentration clays contained in 
coal mass [27]. The presence of Co in PC1 is supported by 
the fact that its content in rocks increases as silica 
decreases, which does not belong to this source [28]. 
Furthermore, Co occurs in secondary Fe minerals together 
with Ni and As. Chromium and V occur more in 
secondary argillaceous rocks. The presence of Cr and V in 
Fe containing minerals is explained by their similar ionic 
radius, which allows the substitution of Fe by the other 
two elements [27, 29]. Definite chemical affinities among 

elements such as that of As for Co and Pb, or Mo for W 
explain their enclosure in this PC. The second PC 
explaining 37.8 % of the variability was named biomass 
factor as it includes elements considered as macronutrient 
for plants (K and P). Besides, this latent factor comprises 
Ba, Cd, Ga, Mn,  Pb and Zn present in carbonate rocks 
from where they are extracted by plants following 
dissolution in acetic acid secreted by roots under anaerobic 
conditions [30]. Elements belonging to PC2 showed high 
concentrations in ashes obtained by burning biomass and 
coal-biomass briquettes [24].  The third factor explaining 
11.5% of the total variance encloses element species 
associated to silicates from pitcoal.  It is noticeable the 
strong correlation between Si and Zr, in accordance with 
their affinity in zirconite (ZrSiO4), the dominant mineral 
of Zr. The presence of As also in this PC is consistent with 
its tendency to be retained on silicate rocks [27]. With the 
last factor (explanation of 9.2% of the total variance) are 
associated mainly Cu and to a lesser extent Ni, Zn and Cd. 
This factor is conditionally named reducible species from 
pitcoal and could be attributed to sulfides as Cd, Cu, Ni 
and Zn show an affinity for S and other reducible species. 
Overall the contribution of variability to element pattern 
within the combustion of pitcoal-sawdust briquettes is 
37.8% from biomass and 54.6% from pitcoal.  
Table 3 presents the Varimax rotated factor loadings 
considering the water leachable metal concentrations in 
samples for a solid/liquid ratio of 1:2. 
 

Table 3. Varimax rotated factor loadings of the water 
leachable  metal  concentrations  from  ash, sawdust and  
             pitcoal for a solid/liquid ratio of 1:2.  

 
Variable PC1 PC2 PC3 PC4 

Al 0.050 0.826 0.177 -0.133 

K -0.208 -0.026 -0.035 0.930 

Cr -0.105 0.976 -0.070 0.076 

Mn 0.966 -0.105 -0.133 -0.029 

Fe -0.188 -0.099 0.880 -0.012 

Co 0.960 -0.069 -0.110 -0.128 

Ni 0.813 -0.093 -0.170 -0.142 

Cu -0.065 -0.026 0.862 -0.051 

Zn 0.952 -0.089 -0.167 -0.125 

Ga 0.959 -0.082 -0.133 -0.107 

Cd 0.850 -0.069 0.369 -0.061 

Ba -0.227 0.021 0.372 0.800 

Pb -0.103 -0.114 0.859 0.057 

Si -0.038 -0.036 -0.173 0.943 

P -0.174 -0.137 0.177 0.415 

V -0.097 0.985 -0.077 -0.021 

As 0.942 -0.015 0.012 -0.076 

Mo -0.103 0.989 -0.072 -0.028 

W -0.091 0.979 -0.081 -0.015 

Variability / % 32.5 24.4 14.5 14.2 
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Fig. 1.  Dendrogram of the cluster analysis on total element concentrations. 
 
 

The four loading factors describe over 85% of the 
total variance. In this PCA Fe, Al and Mn are considered 
tracers in order to interpret the distribution of other 
elements on different fractions. The first PC explaining 
32.5 % of the total variance is conditionally named the 
free metal ions and includes elements as easily water 
soluble species: As, Cd, Co, Ga, Mn, Ni, and Zn. This 
factor is attributed to the influence of pitcoal, since the 
water available fractions of these elements from pitcoal 
ash are higher than from sawdust ash [24]. The second 
latent factor with 24.4 % explanation of the total variance 
includes Cr, Mo and V, very likely adsorbed on secondary 
Al minerals, dominant in clay. This factor is attributed to 
pitcoal and can be defined as adsorbed species on 
secondary minerals. The third factor explaining 14.5% of 
the variance contains Cu, Cd and Pb, which are very 
probable adsorbed on the oxides of Fe, also present in this 
PC. Joining of Cu and Pb together with Fe is justified by 
the affinity of iron oxides to retain these elements [3, 4]. 
This factor corresponding to species retained on oxides is 
also attributed to pitcoal, since Fe content in this material 
is higher than in sawdust [24]. With the last factor are 
associated elements considered plant macronutrients (K, 
P) as well as Si. The reason of the presence of Si in this 
PC besides the two macronutrients is its extraction by 
plants from water soil containing silicic acid. As 
mentioned in ref. [24], the water available fraction of Si 
was higher in sawdust ash than that of pitcoal. This PC 
was attributed to biomass explaining 14.2% of the total 
variance. The PCA emphasized a contribution of 71.4% 
variability from pitcoal, which has a most important 
influence than biomass to mobility of element from ash. 

 
 
 
 
 

4.3. Cluster analysis  
 
The dendrogram presented in Fig. 1 is the result of the 

cluster analysis performed on total content of elements 
considered as objects.  

As regards the total element contents two big clusters 
grouping the most of elements and one cluster containing 
only two elements were separated: 
− cluster (C1) contains K, Cr, Mn, Zn, Ga, Ba, Pb and 
P coming from biomass 
− cluster (C2) grouping Si and Zr coming from 
pitcoal  
− cluster (C3) including Al, Fe, Co, Ni, Cu, Cd, V, 
As, Mo and W coming from pitcoal. 
− The dendrogram in Fig. 2, which considers samples 
as objects and total element contents as variables allows 
the identification of three clusters corresponding to 
samples nature:  
− cluster (C1) grouping sawdust (biomass) (10–14) 
− cluster (C2) containing sawdust ash  (5, 6) 
− cluster (C3) including ash from pitcoal-sawdust 
briquettes (1–4), pitcoal ash (7–9) and pitcoal (15–18).  
− Cluster (C3) can be additionally divided into sub-
clusters according to sample nature.  
− In the dendrogram considering the water leachable 
content of elements as objects (Fig. 3) three big cluster are 
outlined providing a similar grouping as PCA: 
− cluster (C1) with two sub-clusters including Ni, Co, 
Zn and Cd, As, Mn, and Ga, respectively coming from 
pitcoal 
− cluster (C2) grouping Al, Cr, V, Mo and W coming 
from pitcoal 
− cluster (C3) including K, Fe, Cu, Ba, Pb, Si and P 
coming from biomass. 
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Fig. 2. Dendrogram of the cluster analysis on samples pattern as regards total element concentrations.  
                    1–4 - pitcoal-sawdust briquettes ash; 5, 6 - sawdust ash; 7–9 - pitcoal ash; 10–14 - sawdust; 15–18 - pitcoal. 
 

  

 
 

Fig. 3.  Dendrogram of the cluster analysis on water leachable element concentrations. 
 
Cluster analysis considering the sample nature as variable 
for the water leachable element concentrations is presented 
in Fig. 4.  
This approach reveals five clusters: 
− cluster (C1) grouping pitcoal ash (7–9) 
− cluster (C2) containing sawdust ash (5) 
− cluster (C3) including pitcoal-sawdust briquettes 
ash (1–4) and pitcoal (15–18) 
− cluster (C4) containing a single sawdust ash sample 
(6) 
− cluster (C5) grouping sawdust samples (10–14). 

The CA on samples as objects and water leachable 
element concentrations as variables results in a higher 
number of clusters as compared to total element 
concentrations. This was predictable by PCA which 
explained over 92% of the total variance when considering 
the total concentrations compared to only 85% for 
available species. The difference is assigned to sources 
that could not be identified.   
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Fig. 4. Dendrogram of the cluster analysis on samples pattern as regards the water leachable element concentrations.  
                1–4 - pitcoal-sawdust briquettes ash; 5, 6 – sawdust ash; 7–9 - pitcoal ash; 10–14 - sawdust; 15–18 - pitcoal. 

 
 
 

5. Conclusions 
 
The multivariate statistical analysis applied to the 

study of pitcoal-sawdust briquettes combustion revealed 
a new level of information from conventional data and 
provides a better understanding of the process 
complexity in respect with the behavior of elements. 
This approach allowed the identification of the element 
sources and affinity between them as well as samples 
grouping according to their nature. The PCA analysis 
emphasized a higher influence of pitcoal than biomass 
on element sources in the blend combustion. 
Considering the total content of elements four sources 
were identified, of which three attributed to pitcoal. 
These sources correspond to the following element 
species: retained by adsorption and coprecipitation on Al 
and Fe sedimentary minerals; silicates species 
explaining the Si and Zr supply; reducible species as 
sulphides. The biomass factor is responsible for the 
macronutrients source (K, P) as well as elements present 
in soil as carbonates and extracted by plants. Analysis of 
water availability of heavy metals emphasized three 
latent factors corresponding to pitcoal and one to 
biomass. Sources attributed to pitcoal were: free metal 
ions including easily water available species; adsorbed 
species on secondary Al minerals; reducible species 
retained on oxides. The biomass factor explains largely 
the source of macronutrients. Latent factors attributed to 
pitcoal have a greater control on sources of available 
species than on the total.  The variability of sources that 
could not be identified was higher in the case of 
leachable species. As a result of the affinity of elements 
three clusters were outlined for total and leacheate. 
Regarding their nature, samples were grouped in three 

and five clusters respectively, from the point of view of total 
and water available concentration of element species. 
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